Science

New Findings That Map the Cosmic Growth of the Universe Support Einstein’s Theory of Gravity

This article has been reviewed in accordance with Science X’s editorial process and policies. The editors have highlighted the following attributes while ensuring the credibility of the content:

checked

reliable source

reread






The researchers used the Atacama Cosmology Telescope to create this new map of dark matter. The orange regions show where there is more mass; purple where there is less or none at all. Typical features are hundreds of millions of light-years across. The whitish band shows where contaminating light from dust in our Milky Way galaxy, measured by the Planck satellite, obscures a deeper view. The new map uses light from the Cosmic Microwave Background (CMB) essentially as a backlight to outline all of the matter between us and the Big Bang. “It’s kind of like a silhouette, but instead of just having black in the silhouette, you have texture and bits of dark matter, like light coming through a fabric curtain that had a lot of knots in it. and bumps,” said Suzanne Staggs. , director of the ACT and professor of physics Henry DeWolf Smyth of Princeton. “The famous blue and yellow CMB image is a snapshot of what the universe looked like at a single epoch, around 13 billion years ago, and now it gives us information about all epochs since.” Credit: ACT Collaboration

For millennia, humans have been fascinated by the mysteries of the cosmos.

Unlike ancient philosophers who imagined the origins of the universe, modern cosmologists use quantitative tools to better understand the evolution and structure of the universe. Modern cosmology dates back to the early 20th century, with the development of Albert Einstein’s theory of general relativity.

Today, researchers from the Atacama Cosmology Telescope (ACT) collaboration have created a groundbreaking new image that reveals the most detailed map of dark matter spread across a quarter of the sky, reaching deep into the cosmos. Moreover, it confirms Einstein’s theory of how massive structures grow and bend light, over the entire 14 billion year lifespan of the universe.

“We’ve mapped invisible dark matter across the sky to the greatest distances, and clearly see features of this invisible world that span hundreds of millions of light-years,” says Blake Sherwin, professor of cosmology at the University of Cambridge, where he leads a group of ACT researchers. “It looks like what our theories predict.”






The Atacama Cosmology Telescope in northern Chile, supported by the National Science Foundation, operated from 2007 to 2022. The project is led by Princeton University and the University of Pennsylvania – director Suzanne Staggs at Princeton, director Deputy Mark Devlin at Penn – with 160 associates at 47 institutions. Credit: Mark Devlin, Deputy Director of the Atacama Cosmology Telescope and Reese Flower Professor of Astronomy at the University of Pennsylvania

Although it represents 85% of the universe and influences its evolution, dark matter is difficult to detect because it does not interact with light or other forms of electromagnetic radiation. To our knowledge, dark matter only interacts with gravity.

To find it, the more than 160 collaborators who built and collected data from the National Science Foundation’s Atacama Cosmology Telescope in the high Chilean Andes observe the light emanating after the dawn of the universe’s formation, the Big Bang. , when the universe was only 380,000 years old. Cosmologists often refer to this diffuse light that fills our entire universe as “the baby picture of the universe”, but formally it is known as cosmic microwave background (CMB) radiation.

The team is tracking how the gravitational pull of large heavy structures, including dark matter, warps the CMB on its 14 billion year journey towards us, like how a magnifying glass bends light as it passes through through his lens.

“We created a new mass map using the distortions of light left behind by the Big Bang,” says Mathew Madhavacheril, assistant professor in the Department of Physics and Astronomy at the University of Pennsylvania. “Remarkably, it provides measurements that show that the ‘fatness’ of the universe, and the rate at which it is expanding after 14 billion years of evolution, is exactly what you would expect from our standard model of cosmology based on Einstein’s theory. gravity.”






Research by the Atacama Cosmology Telescope collaboration has resulted in a groundbreaking new map of dark matter spread across a quarter of the entire sky, reaching deep into the cosmos. The findings provide further support for Einstein’s theory of general relativity, which has been the basis of the Standard Model of cosmology for more than a century, and offer new methods to demystify dark matter. Credit: Debra Kellner

Sherwin adds, “Our results also provide new insights into an ongoing debate that some have called ‘the crisis of cosmology'”, explaining that this crisis stems from recent measurements that use a different background light, that emitted by stars. galaxies rather than the CMB. These produced results suggesting that dark matter was not lumpy enough in the standard model of cosmology and led to fears that the model might be broken. However, the latest results from the ACT team have accurately assessed that the vast masses seen in this image are exactly the right size.

“When I first saw them, our measurements agreed so well with the underlying theory that it took me a while to process the results,” says Cambridge Ph.D. student Frank Qu. , member of the research team. “It will be interesting to see how this possible discrepancy between the different measures will be resolved.”

“CMB lens data rivals more conventional surveys of the visible light of galaxies in their ability to plot the sum of what exists,” says ACT Director Suzanne Staggs and Henry DeWolf Smyth Professor of Physics at the Princeton University. “Together, the CMB lens and the best optical surveys clarify the evolution of all mass in the universe.”

“When we proposed this experiment in 2003, we had no idea of ​​the full scope of information that could be extracted from our telescope,” says Mark Devlin, Reese Flower Professor of Astronomy at the University of Pennsylvania and Deputy Director of the ACT. “We owe it to the ingenuity of theorists, the many people who built new instruments to make our telescope more sensitive, and the new analysis techniques our team developed.”






Research by the Atacama Cosmology Telescope collaboration has resulted in a groundbreaking new map of dark matter spread across a quarter of the entire sky, reaching deep into the cosmos. The findings provide further support for Einstein’s theory of general relativity, which has been the basis of the Standard Model of cosmology for more than a century, and offer new methods to demystify dark matter. Credit: Lucy Reading-Ikkanda, Simons Foundation

ACT, which operated for 15 years, was decommissioned in September 2022. Nevertheless, further papers presenting the results of the final set of observations are expected to be submitted soon, and the Simons Observatory will perform future observations on the same site, with a new telescope. should enter service in 2024. This new instrument will be able to map the sky almost 10 times faster than ACT.

This research will be presented at “Future Science with CMB x LSS,” a conference taking place April 10-14 at Kyoto University’s Yukawa Institute for Theoretical Physics.

#Findings #Map #Cosmic #Growth #Universe #Support #Einsteins #Theory #Gravity

Leave a Reply

Your email address will not be published. Required fields are marked *